AINA Logo
Publications

 


Sustainable agriculture for Alaska and the Circumpolar North : part I. Development and status of northern agriculture and food security   /   Stevenson, K.T.   Alessa, L.   Kliskey, A.D.   Rader, H.B.   Pantoja, A.   Clark, M.
Arctic, v. 67, no. 3, Sept. 2014, p. 271-295, ill., maps
ASTIS record 80168
PDF

Alaska is food insecure, importing the vast majority of its agricultural products and commodities and maintaining a minimal year-round food supply. Much of the circumpolar North, with some notable exceptions, is also food insecure and similarly reliant on foods imported from outside regions. The stark differences in food policies, food security, and overall production that exist between individual countries and regions of the circumpolar North are likely due to variability in their physical and social environments, their varying agrarian histories (e.g., Old World vs. New World), and their different first-hand experiences with food insecurity, often during wartime. Alaska's agricultural history is unique, having progressed through periods of exploration and expansion and having experienced both success and failure. Agriculture exists today in Alaska as an underdeveloped natural resource - based industry that has been shaped by historical events and developmental processes and continually influenced by a host of environmental and socioeconomic factors. Continued interaction between stakeholders, agencies, and others will help the industry to progress to the point of meeting increasing food demands and improving food security.

L'Alaska est aux prises avec l'insécurité alimentaire en ce sens que l'État importe la grande majorité de ses produits et marchandises agricoles et qu'il maintient un approvisionnement alimentaire minime à l'année. Malgré quelques exceptions remarquables, une grande partie du Nord circumpolaire souffre d'insécurité alimentaire et dépend de produits alimentaires importés d'autres régions. Les importantes différences qui existent en matière de politiques alimentaires, d'insécurité alimentaire et de production générale entre les pays et les régions du Nord circumpolaire sont vraisemblablement attribuables aux divers environnements physiques et sociaux, à leur histoire agraire variée (celle de l'Ancien Monde par opposition à celle du Nouveau Monde) et à leurs différentes expériences directes en matière d'insécurité alimentaire, plus particulièrement en temps de guerre. L'histoire agricole de l'Alaska est unique, ayant passé par des périodes d'exploration et d'expansion, et connu tant des réussites que des échecs. De nos jours, l'agriculture en Alaska est une industrie sous-développée de ressources naturelles qui a été façonnée par des événements historiques et des processus développementaux, continuellement influencée par une panoplie de facteurs environnementaux et socioéconomiques. Les efforts collectifs déployés par les parties prenantes, les organismes et d'autres parties aideront cette industrie à progresser au point de pouvoir répondre à la demande croissante de nourriture et d'améliorer la sécurité alimentaire.


Sustainable agriculture for Alaska and the Circumpolar North : part II. Environmental, geophysical, biological and socioeconomic challenges   /   Stevenson, K.T.   Rader, H.B.   Alessa, L.   Kliskey, A.D.   Pantoja, A.   Clark, M.   Smeenk, J.
Arctic, v. 67, no. 3, Sept. 2014, p. 296-319, ill., maps
ASTIS record 80169
PDF

Local agriculture, food security and food supply are limited in Alaska, as well as in much of the circumpolar North. These limitations stem from a suite of challenges that have never been well characterized, categorized, or wholly defined. We identify these challenges as being environmental, geophysical, biological, or socioeconomic in nature, noting that some challenges are interrelated. Additionally, Alaska is expansive, and growing conditions are highly variable across different regions and microclimates of the state. Environmental challenges to Alaskan agriculture are generally linked to high latitude and include strong seasonality, a short growing season, cold temperatures, and unpredictable frosts. Geophysical challenges are characterized by a high percentage of soils that are wet and cold or low in natural fertility. Biological challenges include cultivar adaptability and selection; the control of various pests, weeds, and diseases; and decreased microbial activity in cold soils, which can allow pesticides to linger and slow mineralization of organic fertilizers. Socioeconomic challenges to farming in Alaska are especially limiting and may categorically represent the strongest hindrances to agriculture. They often overlap or interact with many of the identified agro-ecological and biogeographic challenges. Major socioeconomic issues can be a relatively low financial incentive or reward for farmers; inconsistent or limited markets; the high cost of land, infrastructure, and inputs; zoning challenges; a lack of cooperatives; and for rural farmers, time conflicts with more traditional means of subsistence food acquisition. These challenges collectively represent factors that limit agriculture in Alaska, and they provide a basis and justification for developing more sustainable solutions.

En Alaska, l'agriculture locale, la sécurité alimentaire et les approvisionnements en vivres sont limités. C'est également le cas d'une grande partie du Nord circumpolaire. Ces limitations découlent d'un ensemble de défis qui n'ont jamais été bien caractérisés, catégorisés ou entièrement définis. Nous estimons que ces défis sont d'ordre environnemental, géophysique, biologique ou socioéconomique, et que certains des défis sont interreliés. De plus, l'Alaska est d'une grande étendue, et les conditions de croissance varient énormément d'une région à l'autre et d'un microclimat à l'autre de l'État. De manière générale, les défis environnementaux inhérents à l'agriculture alaskienne ont trait à la haute latitude, ce qui comprend une importante saisonnalité, une courte saison de croissance, des températures froides et des gelées imprévisibles. Pour leur part, les défis géophysiques sont caractérisés par un fort pourcentage de sols humides et froids, ou encore, de sols dont la fertilité naturelle est faible, puis les défis d'ordre biologique ont trait à l'adaptabilité et à la sélection des cultivars, à la lutte contre divers organismes nuisibles, les mauvaises herbes et les maladies, ainsi qu'à une activité microbienne réduite dans les sols froids, ce qui permet aux pesticides de rester plus longtemps et ralentit la minéralisation des engrais organiques. Quant aux défis de nature socioéconomique, ils imposent des restrictions particulièrement fortes en Alaska, au point où ils pourraient même catégoriquement représenter le plus grand obstacle à l'agriculture. Dans bien des cas, les défis se chevauchent ou ont une action réciproque sur un grand nombre d'enjeux agroécologiques et biogéographiques. De plus, les grands enjeux socioéconomiques peuvent prendre la forme de récompenses financières relativement faibles pour les agriculteurs, de marchés irréguliers ou limités, du coût élevé de la terre, des infrastructures et des intrants, d'obstacles inhérents au zonage, d'un manquede coopératives et, dans le cas des agriculteurs ruraux, de conflits d'emploi du temps avec les moyens de subsistance plus traditionnels d'acquisition de la nourriture. Collectivement, ces défis représentent les facteurs qui imposent des restrictions à l'agriculture en Alaska, et ils constituent les fondements et la justification nécessaires au développement de solutions plus durables.


Sustainable agriculture for Alaska and the Circumpolar North : part III. Meeting the challenges of high-latitude farming   /   Stevenson, K.T.   Rader, H.B.   Alessa, L.   Kliskey, A.D.   Pantoja, A.   Clark, M.   Smeenk, J.
Arctic, v. 67, no. 3, Sept. 2014, p. 320-339, ill., maps
ASTIS record 80170
PDF

Agriculture is a severely underdeveloped industry in Alaska and throughout most of the Subarctic. Growers and entrepreneurs must overcome a diverse set of challenges to achieve greater sustainability in northern communities where resilience is threatened by food insecurity and challenges to northern agriculture have limited the industry. However, several field-based or social policy solutions to problems of high-latitude agriculture have been proposed or are being put into practice. Field-based solutions include the use of special infrastructure or farm management strategies to extend the short growing season, improve soil quality, integrate appropriate pest and irrigation management practices, and further develop the livestock sector. Social and policy solutions are resolutions or decisions reached by stakeholders and government, often through cooperative interaction and discussion. These solutions stem from meaningful discussion and decision making among community members, organizations, agencies, and legislators. Social and policy solutions for Alaska include addressing the high costs of land and the preservation of agricultural lands; improved markets and market strategies; more appropriate funding for research, education and infrastructure; and other integrative or cooperative efforts. Collectively, these solutions will work to improve the outlook for sustainable agriculture in Alaska.

En Alaska et dans une grande partie des régions subarctiques, l'agriculture est une industrie extrêmement sous-développée. Les producteurs et les entrepreneurs doivent surmonter un ensemble de défis variés pour donner lieu à une plus grande durabilité dans les collectivités nordiques, là où la résilience est menacée par l'insécurité alimentaire et où les défis caractérisant l'agriculture nordique imposent des restrictions à l'industrie. Cependant, plusieurs solutions apportées sur le terrain ou par le biais de politiques sociales vis-à-vis des problèmes touchant l'agriculture en haute latitude ont été proposées ou sont en train d'être mises en pratique. Parmi les solutions apportées sur le terrain, notons le recours à une infrastructure particulière ou à des stratégies de gestion agricole visant à prolonger la courte saison de croissance, à améliorer la qualité du sol, à intégrer des méthodes de gestion de l'irrigation et des organismes nuisibles, et à mettre davantage l'accent sur le secteur de l'élevage du bétail. Les solutions en matière de politiques sociales prennent la forme de résolutions ou de décisions prises par les parties prenantes et le gouvernement, souvent en collaboration et à la lumière de discussions. Ces solutions découlent de discussions et de prises de décisions importantes entre les membres des collectivités, les organisations, les agences et les législateurs. Les solutions de politiques sociales de l'Alaska portent notamment sur le coût élevé de la terre et la conservation des terres agricoles, sur l'amélioration des marchés et des stratégies de commercialisation, sur la nécessité d'obtenir des sources de financement plus adéquates pour la recherche, l'éducation et l'infrastructure, ainsi que sur d'autres efforts d'intégration et de coopération. Ensemble, ces solutions permettront d'améliorer la conjoncture de l'agriculture durable en Alaska.


Elatu's funeral : a glimpse of Inughuit-American relations on Robert E. Peary's 1898 - 1902 expedition   /   LeMoine, G.
Arctic, v. 67, no. 3, Sept. 2014, p. 340-346, ill.
ASTIS record 80171
PDF

In January 1901, American explorer Robert E. Peary was an active participant in an Inughuit funeral following the death of a young woman at his base at Fort Conger, Ellesmere Island. Peary's unpublished account of the funeral is the most detailed description of an Inughuit funeral before the introduction of Christianity and agrees in most details with other accounts of funerals from the region. Additionally, along with Peary's and Dr. T.S. Dedrick's journal entries from that time, the funeral and the circumstances surrounding it provide insight into the complex relationships between Peary, his American companions, Dedrick and Matthew Henson, and the Inughuit men and women who overwintered with them at Fort Conger.

En janvier 1901, l'explorateur américain Robert E. Peary a joué un rôle dans les funérailles d'une Inughuite après le décès d'une jeune femme à sa base de Fort Conger, sur l'île d'Ellesmere. Le récit inédit de Robert Peary à propos des funérailles constitue la description la plus détaillée de funérailles inughuites avant l'avènement du christianisme, et la plupart des détails coïncident avec d'autres récits de funérailles de la région. Grâce au récit de Robert Peary et à celui du Dr T.S. Dedrick retrouvé dans son journal intime de l'époque, les funérailles et les circonstances qui les entouraient jettent un regard sur les relations complexes qui existaient entre Robert Peary, ses compagnons américains, le Dr Dedrick et Matthew Henson, ainsi que les femmes et les hommes inughuits qui passaient l'hiver au Fort Conger avec eux.


Seasonal movements and distribution of Steller's Eiders (Polysticta stelleri) wintering at Kodiak Island, Alaska   /   Rosenberg, D.H.   Petrula, M.J.   Schamber, J.L.   Zwiefelhofer, D.   Hollmén, T.E.   Hill, D.D.
Arctic, v. 67, no. 3, Sept. 2014, p. 347-359, maps
ASTIS record 80172
PDF

We used satellite telemetry in 2004 - 06 to describe the annual movements and habitat use of a segment of the Pacific population of Steller's Eiders (Polysticta stelleri) that winters at Kodiak Island, Alaska. Information about broad-scale patterns of seasonal distribution and links among annual cycle stages is critical for interpreting population trends and developing conservation strategies. We captured birds in Chiniak Bay at Kodiak Island in late February and early March and monitored the movements after departure from Kodiak Island of 24 satellite-tagged birds: 16 after-second-year (ASY) age class females, one second-year age class female, and seven ASY males. All birds used the same intercontinental migration corridor during spring, but routes and chronology of spring migration appeared to vary by year and among individuals. Sixteen of the 24 birds that were tracked migrated to breeding areas along the Arctic coast of Russia from the Chukotka Peninsula to the Taymyr Peninsula; five birds, assumed to be non-breeding, spent the summer in nearshore waters of Russia and Alaska; and the remaining three birds either died during spring migration or had failed transmitters. Thirteen birds were tracked to molt sites that were broadly distributed along the coast of Alaska. Molt sites included St. Lawrence Island, the Kuskokwim Shoals, Kamishak Bay, and three sites along the Alaska Peninsula. Twelve of these 13 birds returned to Kodiak Island to winter, and a single male wintered on the Alaska Peninsula. Steller's Eiders marked during winter at Kodiak Island were widely distributed during the breeding season, but a large proportion of marked birds returned to molting and wintering areas in two years of the study.

De 2004 à 2006, nous avons recouru à la télémétrie satellitaire pour décrire l'utilisation de l'habitat et les mouvements annuels d'un segment de la population d'eiders de Steller (Polysticta stelleri) dans la région du Pacifique, eiders qui hivernent sur l'île Kodiak, en Alaska. Il est essentiel d'obtenir des données sur les tendances à grande échelle de la répartition saisonnière et des liens entre les divers stades du cycle annuel de ces oiseaux afin d'être en mesure d'interpréter leurs tendances démographiques et d'élaborer des stratégies de conservation. Nous avons capturé des oiseaux dans la baie Chiniak de l'île Kodiak vers la fin février et le début mars. Après notre départ de l'île Kodiak, nous avons surveillé les mouvements de 24 oiseaux pistés par satellite : 16 femelles de plus de deux ans, une femelle de deux ans et sept mâles de plus de deux ans. Tous les oiseaux ont emprunté le même couloir de migration intercontinental au printemps, mais les routes et la chronologie de la migration printanière semblaient varier d'une année à l'autre et d'un individu à l'autre. Seize des 24 oiseaux pistés ont migré vers des aires de reproduction situées le long de la côte arctique de la Russie, depuis la presqu'île de Tchoukotkae jusqu'à la presqu'île de Taïmyr; cinq oiseaux, probablement non reproducteurs, ont passé l'été dans les eaux côtières de la Russie et de l'Alaska, tandis que les trois autres oiseaux sont morts pendant la migration printanière ou étaient dotés de transmetteurs défectueux. Treize oiseaux ont été repérés à des sites de mue largement répartis le long de la côte de l'Alaska. Parmi ces sites, notons ceux de l'île Saint-Laurent, du haut-fond de Kuskokwim, de la baie de Kamishak et de trois autres sites le long de la péninsule de l'Alaska. Douze de ces 13 oiseaux sontretournés à l'île Kodiak pour passer l'hiver, et un seul mâle a hiverné dans la péninsule de l'Alaska. Les eiders de Steller qui ont été marqués à l'île Kodiak pendant l'hiver étaient largement répartis pendant la saison de reproduction, mais une grande proportion d'oiseaux pistés sont retournés aux aires de mue et d'hivernage au cours des deux années visées par l'étude.


Storm-surge flooding on the Yukon-Kuskokwim Delta, Alaska   /   Terenzi, J.   Jorgenson, M.T.   Ely, C.R.
Arctic, v. 67, no. 3, Sept. 2014, p. 360-374, ill., maps
ASTIS record 80173
PDF

Coastal regions of Alaska are regularly affected by intense storms of ocean origin, the frequency and intensity of which are expected to increase as a result of global climate change. The Yukon-Kuskokwim Delta (YKD), situated in western Alaska on the eastern edge of the Bering Sea, is one of the largest deltaic systems in North America. Its low relief makes it especially susceptible to storm-driven flood tides and increases in sea level. Little information exists on the extent of flooding caused by storm surges in western Alaska and its effects on salinization, shoreline erosion, permafrost thaw, vegetation, wildlife, and the subsistence-based economy. In this paper, we summarize storm flooding events in the Bering Sea region of western Alaska during 1913 - 2011 and map both the extent of inland flooding caused by autumn storms on the central YKD, using Radarsat-1 and MODIS satellite imagery, and the drift lines, using high-resolution IKONOS satellite imagery and field surveys. The largest storm surges occurred in autumn and were associated with high tides and strong (> 65 km hr-1) southwest winds. Maximum inland extent of flooding from storm surges was 30.3 km in 2005, 27.4 km in 2006, and 32.3 km in 2011, with total flood area covering 47.1%, 32.5%, and 39.4% of the 6730 km2 study area, respectively. Peak stages for the 2005 and 2011 storms were 3.1 m and 3.3 m above mean sea level (amsl), respectively-almost as high as the 3.5 m amsl elevation estimated for the largest storm observed (in November 1974). Several historically abandoned village sites lie within the area of inundation of the largest flood events. With projected sea level rise, large storms are expected to become more frequent and cover larger areas, with deleterious effects on freshwater ponds, non-saline habitats, permafrost, and landscapes used by nesting birds and local people.

Les régions côtières de l'Alaska sont souvent touchées par d'intenses tempêtes d'origine océanique. La fréquence et l'intensité de ces tempêtes devraient augmenter en raison du changement climatique qui s'opère à l'échelle mondiale. Le delta Yukon-Kuskokwim, dans l'ouest de l'Alaska, du côté est de la mer de Béring, est l'un des systèmes deltaïques les plus imposants de l'Amérique du Nord. Son relief peu accidenté le rend particulièrement susceptible aux marées montantes découlant des tempêtes et aux augmentations du niveau de la mer. Peu d'information existe au sujet de l'ampleur des inondations attribuables aux ondes de tempêtes dans l'ouest de l'Alaska de même que sur leurs effets en matière de salinisation, d'érosion des berges, de dégel, de pergélisol, de végétation, de faune et d'économie de subsistance. Dans cet article, nous résumons les ondes de tempêtes qui ont eu lieu dans la région de la mer de Béring de l'ouest de l'Alaska entre 1913 et 2011 et nous cartographions à l'aide de Radarsat-1 et de l'imagerie satellitaire MODIS l'étendue des inondations fluviales causées par les tempêtes automnales dans le centre du delta Yukon-Kuskokwim, de même que les lignes de dérive au moyen de l'imagerie satellitaire IKONOS à haute résolution et de levés sur le terrain. Les ondes de tempêtes les plus importantes se sont produites à l'automne. Elles s'accompagnaient de marées hautes et de vents forts (> 65 km h-1) en provenance du sud-ouest. L'étendue maximale des inondations fluviales découlant des ondes de tempêtes a atteint 30,3 km en 2005, 27,4 km en 2006 et 32,3 km en 2011. Au total, la zone inondée couvrait respectivement 47,1 %, 32,5 % et 39,4 % de l'aire de 6 730 km2 visée par l'étude. Le niveau maximal des tempêtes de 2005 et 2011 était de 3,1 m et de 3,3 m au-dessus du niveau moyen de la mer, respectivement, ce qui est presque aussi élevé que la hauteur estimée de 3,5 m au-dessus du niveau moyen de la mer pour la plus grosse des tempêtes observées (en novembre 1974). Plusieurs villages abandonnés au fil des ans se trouvent dans la zone touchée par les plus grandes inondations. Compte tenu de l'élévation projetée du niveau de la mer, la fréquence des tempêtes d'envergure devrait augmenter et les tempêtes devraient couvrir des zones plus grandes, ce qui aura des effets délétères sur les étangs d'eau douce, les habitats non salins, le pergélisol et les paysages dont se servent les oiseaux nicheurs et les gens de la région.


Remote estimates of ice algae biomass and their response to environmental conditions during spring melt   /   Campbell, K.   Mundy, C.J.   Barber, D.G.   Gosselin, M.
Arctic, v. 67, no. 3, Sept. 2014, p. 375-387, ill., map
ASTIS record 80174
PDF

In this study, we support previous work showing that a normalized difference index (NDI) using two spectral bands of transmitted irradiance (478 and 490 nm) can be used as a non-invasive method to estimate sea ice chlorophyll a (chl a) following a simple calibration to the local region. Application of this method during the spring bloom period (9 May to 26 June) provided the first non-invasive time series dataset used to monitor changes in bottom ice chl a concentration, an index of algal biomass, at a single point location. The transmitted irradiance dataset was collected on landfast first-year sea ice of Allen Bay, Nunavut, in 2011, along with the physical variables thought to affect chl a accumulation and loss at the ice bottom. Time series biomass calculated using the NDI technique adhered well to core-based biomass estimates, although chl a values remained low throughout the bloom, reaching a maximum of 27.6 mg/m² at the end of May. It is likely that warming of the bottom ice contributed to loss of chl a through its positive influence on brine drainage and ice melt. Chl a content in the bottom ice was also significantly affected by a storm event on 10 June, which caused extensive surface melt and a rapid increase in the magnitude of transmitted irradiance. Furthermore, the velocity of current, measured below the ice at the end of a spring neap-tidal cycle, was negatively associated with ice algae chl a biomass (the stronger the current, the less biomass). The NDI method to remotely estimate ice algal biomass proved useful for application in our time series process study, providing a way to assess the effects of changes to the sea ice environment on the biomass of a single population of ice algae.

La présente étude vient appuyer d'anciennes études selon lesquelles un indice par différence normalisée (IDN) recourant à deux bandes spectrales d'éclairement énergétique transmis (478 et 490 nm) peut servir de méthode non invasive d'estimation de la chlorophylle a (chl a) de glace de mer suivant un simple étalonnage dans une aire locale. Le recours à cette méthode pendant la saison de l'efflorescence printanière (du 9 mai au 26 juin) a permis d'obtenir le premier ensemble de données non invasives en séries chronologiques dans le but de surveiller les changements se manifestant dans la concentration de chl a de la glace de fond, un indice de biomasse algale, en un seul point. Les données relatives à l'éclairement énergétique transmis ont été recueillies à partir de la glace de mer de rive de l'année à la baie Allen, au Nunavut, en 2011, en même temps que les variables physiques censées avoir des effets sur l'accumulation de chl a et sur la perte de glace de fond. Les données chronologiques relatives à la biomasse calculées à l'aide de la technique de l'IDN cadraient bien avec les estimations de la biomasse obtenues à l'aide d'échantillons, bien que les valeurs de la chl a restaient à la baisse pendant l'efflorescence, pour atteindre un maximum de 27,6 mg/m² à la fin du mois de mai. Il est vraisemblable que le réchauffement de la glace de fond a entraîné la perte de chl a en raison de son influence positive sur l'égouttage de la saumure et la fonte des glaces. La teneur en chl a de la glace de fond a également été fortement touchée par un événement pluvio-hydrologique qui a eu lieu le 10 juin, événement qui a entraîné une importante fonte en surface et l'augmentation rapide de la magnitude de l'éclairement énergétique transmis. Par ailleurs, la vélocité du courant, mesurée sous la glace à la fin d'un cycle printanier de marée de mortes-eaux, a été négativement liée à la biomasse en chl a de l'algue glaciaire (plus le courant était fort, moins la biomasse était grande). La méthode de l'IDN en vue d'estimer la biomasse de l'algue glaciaire à distance s'est avérée utile dans le cadre de l'application de notre étude en séries chronologiques, car elle a présenté un moyen d'évaluer les effets des changements caractérisant l'environnement de la glace de mer sur la biomasse d'une seule population d'algues glaciaires.


Harvest and nitrogen management of three perennial grasses as biomass feedstock in Subarctic Alaska   /   Sparrow, S.D.   Zhang, M.   Masiak, D.T.   Van Veldhuizen, R.
Arctic, v. 67, no. 3, Sept. 2014, p. 388-395, ill.
ASTIS record 80175
PDF

High energy costs in high-latitude regions have generated interest in the feasibility of bioenergy cropping. The goal of this study was to determine the nitrogen (N) response and best harvest regime for biomass production of three perennial, cool-season grass species-tufted hairgrass (Deschampsia caespitosa (L.) P. Beauv.), slender wheatgrass (Elymus trachycaulus (Link) Gould ex Shinners), and smooth bromegrass (Bromus inermis Leyss)-at two locations in central Alaska. Maximum dry matter yields were 11.3 Mg/ha for smooth bromegrass, 8.1 Mg/ha for tufted hairgrass, and 8.0 Mg/ha for slender wheatgrass, but yields varied greatly among years. We found a linear N response in most cases, with highest yields at the 100 kg N/ha application rate. Yields for the double-harvest regime usually did not vary significantly from those of the fall harvest, but spring harvest sometimes reduced yields dramatically. Biomass in the spring harvest was usually dry enough not to require additional drying for storage. Results of this study indicate it may be possible to produce grass biomass yields high enough for use as bioenergy feedstocks in central Alaska, but questions remain about the best management practices and the economics of growing bioenergy crops in Alaska.

Les coûts élevés de l'énergie en haute latitude incitent les gens à se pencher sur la faisabilité d'entreprendre des cultures bioénergétiques. L'objectif de cette étude consistait à déterminer la réponse à l'azote et le meilleur régime d'exploitation pour la bioproduction de trois espèces de graminées vivaces en saison fraîche, soit la deschampsie cespiteuse (Deschampsia caespitosa (L.) P. Beauv.), l'élyme à chaumes rudes (Elymus trachycaulus (Link) Gould ex Shinners) et le brome inerme (Bromus inermis Leyss), à deux endroits du centre de l'Alaska. Le rendement maximum de matière sèche était de 11,3 tm/ha dans le cas du brome inerme, de 8,1 tm/ha dans le cas de la deschampsie cespiteuse et de 8,0 tm/ha dans le cas de l'élyme à chaumes rudes, bien que les rendements aient connu d'importantes variations d'une année à l'autre. Nous avons trouvé une réponse linéaire à l'azote dans la plupart des cas, les rendements les plus élevés étant ceux de la dose d'application de 100 kg N/ha. Le rendement du régime à double récolte ne variait généralement pas beaucoup du régime à récolte d'automne, bien que les récoltes du printemps donnaient parfois un rendement considérablement réduit. De manière générale, la biomasse de la récolte du printemps était suffisamment sèche pour ne pas avoir besoin d'être asséchée davantage avant d'être stockée. Les résultats de cette étude indiquent qu'il peut être possible de produire des rendements en biomasse suffisamment élevés à partir de graminées pour être utilisés comme charge bioénergétique dans le centre de l'Alaska, mais cela dit, il y a toujours lieu de répondre aux questions portant sur les pratiques de gestion exemplaires et le caractère économique des productions bioénergétiques en Alaska.


Structure and composition of tree islands and krummholz within the forest-tundra ecotone in central and eastern Canada   /   Albertsen, E.   Harper, K.A.   De Fields, D.
Arctic, v. 67, no. 3, Sept. 2014, p. 396-406, ill., maps
ASTIS record 80176
PDF

The forest-tundra ecotone is expected to experience some of the initial effects of climate change. At the forefront of this transition zone, we find clonal growth forms of stunted and deformed trees with and without taller erect trees, called tree islands and krummholz, respectively. We sought to assess the potential effects of expansion of these growth forms on tundra plant species at two Canadian locations, one in the Mealy Mountains of Labrador and the other near Churchill, Manitoba. Our objectives were 1) to analyze the structure (height distribution and shape) of these clonal growth forms to determine whether they are expanding; 2) to compare tree cover on the leeward and windward sides of these growth forms and 3) to assess patterns in individual plant species across these growth forms. Cover of trees and other plant species was measured at both locations, while tree stems were mapped near Churchill only. The presence of seedlings and symmetric patterns of tree height suggest that half of the tree islands near Churchill may be expanding. The edges of tree islands and krummholz may harbour safe sites for tundra plant species, as shown by peaks in cover of individual species at these edges. Our results suggest that expansion of tree islands and krummholz would affect the abundance of tundra plant species, which could lead to changes in species composition and biodiversity.

On s'attend à ce que l'écotone de la toundra forestière subisse dans une certaine mesure les premiers effets du changement climatique. À l'avant-plan de cette zone de transition se trouvent des formes de croissance clonales d'arbres rabougris et difformes parfois assortis ou non assortis de plus grands arbres dressés, ce que l'on appelle des îlots boisés et des krummholz, respectivement. Nous avons cherché à évaluer les effets potentiels de l'expansion de ces formes de croissance clonales sur les espèces végétales de la toundra à deux emplacements situés au Canada, un aux monts Mealy du Labrador et l'autre près de Churchill, au Manitoba. Nos objectifs étaient les suivants : 1) analyser la structure (répartition des hauteurs et formes) de ces formes de croissance clonales afin de déterminer si elles prennent de l'expansion; 2) comparer la couverture arborescente en aval et en amont des croissances clonales; et 3) évaluer les modèles se dessinant chez les diverses espèces végétales individuelles au sein de ces formes de croissance. Les couvertures arborescentes et d'autres espèces végétales ont été mesurées aux deux endroits, tandis que les tiges d'arbres n'ont été relevées qu'à l'emplacement de Churchill. La présence de semis et de modèles symétriques en ce qui a trait à la hauteur des arbres suggère que la moitié des îlots boisés près de Churchill pourraient être en expansion. Le bord des îlots boisés et des krummholz pourrait constituer des lieux sûrs pour les espèces végétales de la toundra, comme l'indiquent les crêtes caractérisant la couverture des espèces individuelles situées en bordure. Nos résultats laissent entendre que l'expansion des îlots boisés et des krummholz aurait des incidences sur l'abondance des espèces végétales de la toundra, ce qui pourrait entraîner des changements sur le plan de la composition et de la biodiversité des espèces.


Hjalmar Nelson Hamar (1894-1967)   /   Sikstrom, C.B.
Arctic, v. 67, no. 3, Sept. 2014, p. 407-409, ill.
ASTIS record 80177
PDF

A history of Yellowknife says of Hjalmar Nelson that "it is doubtful whether any other man, living or dead, could know more about the mysteries of the Barren Lands of Northern Canada, than this Norwegian trapper" (Horan, 1947:34). An extraordinary barren lands traveler, he covered thousands of kilometres across the Northwest Territories of Canada during five decades of living in the North and often overwintered alone. Mount Hamar is named after Hjalmar. His contemporaries included well-known early barren lands trappers and adventurers such as John Hornby, who is most famous for starving to death on the Thelon River, and Helge Ingstad, who gained public fame by co-discovering the Viking ruins at Vinland, Newfoundland, in 1960 (Ingstad and Ingstad, 1991). Hjalmar Nilsen Hundhammer was born 14 November 1894 in Dale parish of Bruvik province, Hordaland, Norway. He was the sixth of eight children. Norway emigration records show that he and his 14-year-old sister left Bergen by ship for Rochester, Minnesota, on 17 July 1913. He was just 19 years old. Hjalmar crossed into Canada in 1914 and became a Canadian citizen in March 1917. He was drafted into the Canadian army on 11 June 1918 and served in the First Depot Battalion, Alberta Regiment, until May 1919 as Hjalmar Nelson Hamar. He had light hair and blue eyes, and he was five and a half feet tall. After the war, he likely worked his way north to Bella Coola, British Columbia, because a Norwegian settlement was there. Certainly he was in the Mackenzie River valley by 1920, for he describes meeting the crew that started drilling the Imperial Oil Limited Norman Wells discovery well in 1919 (Hamar, 1962.) ... Ingstad, quoted by David Pelly, referred to Hjalmar Dale (later Hjalmar Nelson) later Hjalmar Nelson) "as the man who taught him everything he needed to know in order to survive as a trapper." ... During summer 1929, Hjalmar was taking furs out in a willow-framed canoe covered by canvas and dog-hides. He had trapped alonethat winter near the headwaters of the Thelon River at Lynx and Whitefish Lakes, 700 km upstream. He was on his way to Baker Lake, Chesterfield Inlet, Hudson Bay, 350 km downstream. ... After the 1928-29 trapping season, warden Billy Hoare hired Hjalmar for $100 to help build and supply Canadian Wildlife Service cabins in the newly established Thelon Game Sanctuary (Thomson, 1990:160). He spent that fall in that activity. Hjalmar stayed near the Thelon, trapping in the Dubawnt River barren lands, during 1930-32. During winter 1932-33, he returned to Norway for several months to visit relatives. ... It is certain that he worked at Norman Wells from 1947 to 1959 as an oilfield operator for Imperial Oil Limited. He retired at age 65 from turning valves on oil wells and transporting oil in river barges during short summers. He returned to living off the land while prospecting and trapping with his beloved dogs. During winters, he was dropped by plane and picked up, by his own misdirections, during late spring or early summer, at disguised places up and down the Mackenzie Valley and around Great Bear Lake. In August 1967, at age 72, Hjalmar set off on his last trapping and prospecting trip. His body was found in February 1968, when an RCMP patrol flew in for a pre-arranged pickup at an unnamed lake, 35 km southwest of Norman Wells. He was burnt from the waist down. His overalls had caught fire but the 22-caliber rifle shells in his chest pocket had not exploded. The Northwest Territories administrator's report says that a heart attack, peptic ulcer, or malignancy may have contributed to his death. ... There is a local tradition each summer solstice to climb [Mount Hamar] in the Franklin Mountains to view the midnight sun. Those who reach the summit see the beauty and arch of Canada's longest river, with the Mackenzie Mountains to the west, the sun barely dipping below them. Hjalmar's memorial plaque is on the stone cairn before them. Although Hjalmar doubtless would have avoided such attention or honour, the inscription is entirely fitting: He Loved the North.


Robert George Fechhelm (1948-2014)   /   Galloway, B.J.
Arctic, v. 67, no. 3, Sept. 2014, p. 416, ill.
ASTIS record 80178
PDF

Robert (Bob) George Fechhelm was born on 29 May 1948 in Englewood, New Jersey. He graduated from Bergenfield High School in New Jersey and enlisted in the U.S. Army during the Vietnam War, serving honorably from February 1969 through January 1972. He received his Bachelor of Science degree from Southhampton College in 1976. Beginning in 1977, he began researching the effects of temperature on the behavior and physiology of fishes, and he continued this line of research at Texas A&M University, where he received his Master of Science degree in 1981 under Dr. William H. Neill. Dr. Neill was one of the pioneers in developing a new experimental approach for determining behavioral thermoregulation in fishes. At this same time, the effects on water temperature of solid-fill causeways extending from the shore to offshore docks and drilling islands in the nearshore Beaufort Sea emerged as a major environmental issue for Alaska. Flow divergence at the seaward tips of the causeways caused upwelling of cold, marine bottom water, which was advected into warm, nearshore waters used for feeding and migration by Arctic fishes. When approached about working on this issue, Dr. Neill recommended Bob as the person to investigate the consequences of these temperature changes on the Arctic fish species of concern. Within a few weeks, in the summer of 1981, Bob travelled to northern Alaska and set up a state-of-the-art temperature preference study of the Arctic cisco (Coregonus autumnalis). This research led to the publication of two landmark research papers: one described the temperature preferences of the Arctic cisco, and the other used this information to predict the movements and distribution of Arctic cisco relative to temperature-salinity regimes near a Beaufort Sea causeway. Thus began Bob's lifelong passion for the study of Arctic fishes in northern Alaska. His research generated on the order of 24 publications on Arctic fishes in the formal literature, as well as scores of individual research reports. Bob received a PhD from Texas A&M University in 1995. Bob's Arctic fish research interests were diverse. In addition to modeling movements of fish in environmental gradients, he investigated the role of winds on the recruitment of Arctic cisco from Canadian spawning grounds to Alaskan rearing habitats; the effects of temperature and salinity on the growth, condition, and mortality of several species of Arctic fishes; the role of winds on the dispersal patterns of other species of Arctic fishes; population dynamics and the role of density-dependence imposed by limited overwintering habitat; and even the genetics of Arctic fishes. He authored or co-authored several overview papers on the natural history of Arctic coastal fishes. In 2001, 20 years after emergence of the issue of causeway impacts on water temperature and fish, he published a definitive paper in this journal (Arctic) on the hydrographic effects of the causeways that had started his career, using a Before-After Control-Impact or BACI analysis. ... Bob's Arctic research, spanning more than three decades, provided science with a new understanding of this ecosystem. His work was among the first to show how wind was the most controlling factor for virtually all aspects of the local ecology. The long-term monitoring program he helped design and implement is the only one of its kind for this part of the world and is a model of how such studies should be conducted. These foundation studies will be used this summer (2014) for two separate efforts regarding the effects of oil and gas activities on local fauna. Bob passed away on 21 April 2014. He was a good colleague and close friend. He will be missed.


Charles (Chuck) Henry Racine (1940-2014)   /   Sturm, M.
Arctic, v. 67, no. 3, Sept. 2014, p. 417-418, ill.
ASTIS record 80179
PDF

In the summer of 1972, Chuck Racine, a young plant ecologist from Duke University, came to Alaska and found his calling studying the Arctic tundra. The discovery of oil at Prudhoe Bay, Alaska, in 1968, and the signing into law of the Alaska Native Claim Settlement Act (ANCSA) in 1971, cleared the way for one of the greatest acts of land conservation in history: the Alaska National Interest Lands Conservation Act (ANILCA). As part of the run-up to this conservation legislation, federal agencies began inventorying and assessing almost 100 million acres of Arctic and sub-Arctic lands in 1972, anticipating the creation of new national parks, wildlife refuges, and designated wild and scenic rivers. During that first summer, Chuck was recruited to serve on a 10-person team that evaluated lands on the Seward Peninsula for potential inclusion in the National Park system. Their evaluation study led to the creation of the Bering Land Bridge National Preserve. For the following four summers, Chuck continued in the same type of work, producing vegetation and floristic inventories of some of the most iconic lands in Alaska. During those years, he spent each summer in the field and each winter in the Lower 48 (mostly Vermont) writing up his results. Between 1972 and 1979 he authored nearly a dozen internal reports that contributed directly to the creation or expansion of the Bering Land Bridge National Preserve, Kobuk Valley National Park, Lake Clark and Katmai National Parks and Preserves, and Yukon-Charley National Preserve. A careful and meticulous observer, Chuck also began to notice and record the impact of fire and human disturbance on tundra during these long summer seasons. This was how he became a pioneer in this branch of ecology, and it became the focus of four decades of research. In the end, he published 65 widely recognized papers, six of which appeared in this journal, and he helped set the pattern for how this type of research should be conducted. Chuck was born on 22 May 1940 and grew up in Hinsdale, Illinois. He attended Lake Forest Academy in Illinois, then Dartmouth College, where his interest in plant ecology began. But it was during his graduate education at Duke University that he first became aware of the possibilities of the Arctic. His PhD began under the direction of H.J. Oosting, but when Oosting passed away, W.D. Billings took Chuck on as a student. Billings has been called the "father of Arctic plant ecology" and before long Chuck was headed north. In 1969, he completed his dissertation on the community dynamics of the oak forests of the southern Blue Ridge Escarpment. He spent the next two field seasons in the Galapagos Islands studying plant-animal interactions, but as fate would have it, in 1972 his opportunity arrived, and from then until his death in 2014, his passion was the tundra. During those years, he held academic positions at Ohio State University, Notre Dame, North Carolina State University (where he met his wife Marilyn), and the Center for Northern Studies in Vermont, before becoming a research ecologist in 1987 at the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) in New Hampshire. Even in his later years, when his health slowed him down, he continued to go north to do fieldwork, his ailment in no way diminishing his enthusiasm for being out on the tundra. Chuck's studies of tundra fire were both serendipitous and prescient. They initially came about because in 1977 large tundra fires in northwestern Alaska burned some of the areas that he had surveyed four years earlier. His detailed field notes (in this pre-GPS era) allowed him to return to plots he had measured prior to the fire and document the primary and secondary stages of the vegetation recovery and thaw depth response. For example, on the Seward Peninsula, Chuck was able to resample his plots four times over a 30-year period, making this record one of the longest and most comprehensive series in existence. Key effects, like increased shrub growth, in some cases emerged only after two decades of monitoring. In subsequent years, he expanded his Seward studies to include burns along the Noatak and Kokolik Rivers on the North Slope. Making intensive use of early Landsat images and Alaska fire records, he was able to develop one of the first basin-wide estimate of fire return intervals for tundra. His work provides an essential baseline for Alaskan tundra fires, including the headline-making 2007 Anaktuvuk tundra fire, which burned more than 1000 km². But fire wasn't the only disturbance that interested Chuck. Over the years, he examined the impact of oil exploration on the tundra of the Seward Peninsula, the response of mosses and lichens to intentional oil spills, the effects of all-terrain vehicles near Anaktuvuk Pass and in the Wrangell-St. Elias Mountains, and even the impact of airboat use on the fens of the Tanana Flats near Fairbanks. ... It was his finding that disturbances produced an increase in shrub size and abundance that led to our collaboration and friendship. I had obtained a big pile of air photos from northern Alaska taken in the 1940s, and I figured they could be used to determine whether shrubs were encroaching on the tundra ... but I barely knew the difference between a willow and an alder. Chuck and I were already working together on a snow ecology study, and he was headed to our field area near Ivotuk, about 320 km south of Barrow, Alaska. I asked him if he wanted to work with me on the shrub photos, and when he enthusiastically agreed, I handed him a dozen photos and said, "See if you can repeat these." And repeat them he did! When he got back, it took the two of us less than a minute to realize we had superb and incontrovertible evidence for the greening of the Arctic. It was an electric moment. With our third colleague, Ken Tape, we went on to re-photograph hundreds of square kilometers of northern Alaska, finding that an expansion of shrubs was underway nearly everywhere. These photo-based studies remain some of the most compelling evidence for environmental change in the tundra regions of the Arctic. ... A memorial fund has been established at the University of Alaska Fairbanks to support student research on topics Chuck would have found exciting and worthwhile.


Working with northern communities to build collaborative research partnerships : perspectives from early career researchers   /   Tondu, J.M.E.   Balasubramaniam, A.M.   Chavarie, L.   Gantner, N.   Knopp, J.A.   Provencher, J.F.   Wong, P.B.Y.   Simmons, D.
Arctic, v. 67, no. 3, Sept. 2014, p. 419-429, ill.
ASTIS record 80180
PDF

Partnerships between northern communities and academics have existed for decades, yet new attitudes regarding northern scholarship have shifted the research paradigm towards one that is more collaborative, interdisciplinary, and reflective of northern people's priorities (Gearhead and Shirley, 2007; Wolfe et al., 2011; Adams et al., 2014). These shifting priorities have been largely driven by comprehensive land-claim agreements (e.g., the Yukon Umbrella Final Agreement, several land-claim agreements in the Northwest Territories, Nunavut, and northern Quebec, and the Labrador Inuit Land Claims Agreement) that have led to various types of natural resource management, from co-management through self-government. Community involvement is an important component of licensing requirements for research in the three Canadian territories, and communities are calling for increasing participation-at every level-in research programs that take place in their region (First Nations Centre, 2007a, b; ITK and NRI, 2007; Nickels and Knotsch, 2011), including a role for indigenous researchers (McGregor et al., 2010). This growing impetus for local community involvement in northern research is often driven by the rapid environmental, socioeconomic, and developmental changes affecting northern communities and ecosystems (Berkes and Jolly, 2002; Armitage et al., 2011; Ford et al., 2013). The result has been efforts to form community-collaborative research programs across disciplines ranging from health (Jardine and Furgal, 2010; Wesche et al., 2011) and environmental sciences (Marcoux et al., 2011) to social sciences (Nahanni, 1977; Ryan and Robinson, 1990; Caine et al., 2007; Lyons, 2013), although many academic practices are still adapting to this paradigm shift. Community-collaborative research, for the purposes of this paper, is an overarching term that encompasses different approaches to research (e.g., community-engaged research, community-based participatory research, community-based monitoring) that involves engaging local communities and individuals in the research process with the goal of sharing or co-generating knowledge to understand complex problems and bring about change through policy. ... In Canada, early career researchers (ECRs) have a strong desire to meet the growing demand to work closely and collaboratively with northern communities, yet many ECRs are uncertain on how to proceed with this type of research design. Undertaking community-collaborative research can be a daunting task for ECRs who are often restricted by time and a lack of experience on how to effectively build and employ research collaborations with northern communities. Many ECRs report that they do not have enough mentorship within their institutions to support their community-collaborative research efforts, and they lack adequate skills and information required to undertake this task in a meaningful way. Despite the requirements and benefits of community-collaborative research, many researchers- even experienced ones- admit that they do not have the necessary contacts, experience, or resources to engage community members actively beyond the minimum permitting process. To support ECRs in their efforts to conduct community-collaborative research and develop local community partnerships in northern Canada, the ArcticNet Student Association (ASA) and the Association of Polar Early Career Scientists (APECS) convened two "Communitydriven Research" sessions during a two-day Career Development Workshop at the International Polar Year (IPY) 2012 Conference in Montreal, Canada. Here, we describe the sessions, report common themes that were addressed, and summarize the resulting discussions. We also provide our perspectives and lessons learned while working on community-collaborative research projects in northern Canada. We hope to provide insight from the experiences of ECRs that have been working towards the new northern research paradigm, and provide suggestions to gui de new ECRs to conduct community-collaborative research successfully. ...


© Arctic Institute of North America. Records from this database may be used freely for research and educational purposes, but may not be used to create databases or publications for distribution outside your own organization without prior permission from ASTIS.